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Meteor Science

A practical method for the analysis of meteor spectra

Martin Dubs 1 and Peter Schlatter 2

The analysis of meteor spectra (photographic, CCD or video recording) is complicated by the fact that spectra
obtained with objective gratings are curved and have a nonlinear dispersion. In this paper it is shown that
with a simple image transformation the spectra can be linearized in such a way that individual spectra over
the whole image plane are parallel and have a constant, linear dispersion. This simplifies the identification
and measurement of meteor spectral lines. A practical method is given to determine the required image
transformation.
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1 Introduction

Meteor spectra are recorded by placing a prism or a
transmission grating in front of the camera lens (Rend-
tel, 2002). The light of any point source is separated
into a line spectrum, with different wavelengths re-
fracted or diffracted at different angles. In prisms, the
wavelength separating mechanism is refraction, which
is highly nonlinear. This is described by the dispersion
dβ/ dλ, the change in refraction angle per wavelength
unit. It is a strongly varying function of the wavelength
λ and depends on the prism angle and prism material.
In gratings the separation of different wavelengths is
caused by diffraction from the closely spaced grating
lines and dispersion is a slowly varying function of the
incident and exit angles and inversely proportional to
the separation of grating lines.

There are other differences between prisms and grat-
ings. Prism angular dispersion is generally small, re-
quiring long focal lengths for sufficient linear disper-
sion. An advantage of prisms is that all light is sepa-
rated into one spectrum. Gratings on the other hand
produce spectra of different orders with different dis-
persion. Part of the light passes through the grating
undiffracted (the so called zero order), which is used
as a zero wavelength reference. If recorded, this is of
great help for the calibration of the spectrum. Modern
gratings are blazed, that means that most of the light
is diffracted into one (often the first) order with an effi-
ciency of typically 50% or higher. The rest of the light
produces the zero order and other (higher) orders on
both sides of the zero order.

In this paper only grating spectra are discussed,
as they are at present the preferred choice for video
and CCD cameras with a small chip size (compared to
large size photographic film). Unfortunately the same
method cannot be applied to prism spectra, where the
nonlinearities are much greater and of a different origin.

For a given chip size the focal length of the lens de-
termines the field of view and for a given grating also
the linear dispersion dx/ dλ in µm/nm or pixel/nm. As

1Im untern Stieg 2, CH-7304 Maienfeld, Switzerland.
Email: martin-dubs@bluewin.ch

2Birkenweg 8, CH-3033 Wohlen b. Bern, Switzerland

IMO bibcode WGN-434-dubs-spectra
NASA-ADS bibcode 2015JIMO...43...94D

the light of a meteor is dispersed over many pixels the
detection sensitivity is several magnitudes lower for me-
teor spectra than for the detection of meteors with the
same lens detector combination, so fewer meteors are
recorded. Choosing a short focal length increases the
field of view but reduces the linear dispersion or resolu-
tion of the spectrum. In addition, at larger incident and
diffracted angles the nonlinearity of dispersion becomes
more apparent, making the analysis of spectra quite
complicated. Both, the low number of useful events
and the complicated analysis of the spectra discourages
many observers of recording meteor spectra.

In this paper, the calibration of meteor spectra is
treated in some detail. Based on simple geometric anal-
ysis a practical method is given which straightens the
curved, nonlinear spectra to parallel, linear spectra with
constant dispersion over the whole field of view. The
geometric approach also suggests a method for deter-
mining the required image transformation, which will
be discussed in detail below.

2 Theory of grating diffraction

A method for computing the wavelengths of objective
grating spectra, suitable for analysis of meteor spectra,
is described in (Ceplecha, 1961). At the time the Ce-
plecha paper had been written, computers were not in
widespread use and photographic film was the record-
ing medium. Today software for image analysis and
CCDs are in common use and the analysis of the spec-
tra should take advantage of the increased possibilities.
For easier comparison with that work, the same nota-
tion and coordinate systems as far as convenient will be
used in the present paper.

Figure 1 shows the orientation of a Cartesian coor-
dinate system with respect to the grating. The plane of
the grating coincides with the xy-plane and the grooves
are aligned parallel to the y-axis. Light from a meteor
trail can be regarded as a succession of point sources at
infinity, each point being characterized by parallel rays
that eventually impinge on the grating. In the given
coordinate system, the components of a unit vector
(A,B,C) describe the direction of the rays originating
from one point, while the components of the unit vec-
tor (A′, B′, C′) describe the direction of the diffracted



WGN, the Journal of the IMO 43:4 (2015) 95

Figure 1 – Coordinate system. (A,B,C) components of inci-
dent ray unit vector. (A′, B′, C′): components of diffracted
ray unit vector, projected on a sphere with radius f .

beam. The grating equation relates these two vectors
(Rowland, 1893):

A′ = A+mλG (1)

B′ = B (2)

C′ =
√

(1−A′2 −B′2) (3)

λ denotes the wavelength of the incident beam and m is
the grating order. The special case m = 0 is called zero
order, for which the incident beam is not deflected, in-
dependent of the wavelength. G is the grating constant
or inverse grating line-spacing in grooves/mm.

In textbooks on optics, the grating equation is usu-
ally given in angular notation, see e.g. (Schroeder, 1970):

mλG = cos γ(sinβ + sinα) (4)

with α denoting the angle of incidence, β the angle of
diffraction and γ the angle between the incident ray and
the xz-plane. While the angular notation is equivalent
to the vector notation of equations (1–3), the vector
notation considerably facilitates the subsequent deriva-
tions.

3 A basic lens model

The orientation of the meteor camera relative to the co-
ordinate system is shown in Figure 2. The optical axis
of the lens is coincident with the z-axis and both the
image plane and the grating plane are at right angles
to the z-axis. In order to find the image point P of
the diffracted ray (A′, B′, C′), a basic model of the lens
is required. If we assume that the lens is free of aber-
rations except distortion, there is rotational symmetry
with respect to the optical axis. Then, the distance r
of an image point P from the optical axis is entirely
determined by the angle between the diffracted ray and
the z-axis, the polar angle ρ:

r = fg(ρ) (5)

where f denotes the focal length of the lens. The func-
tion g(ρ) determines the projection properties of the

Figure 2 – Section through meteor camera showing relation
between ρ and r.

lens. It must be an odd, strictly increasing function,
and for small angles of ρ, i.e. for paraxial rays, g(ρ) = ρ.
A Taylor expansion will consist of terms with odd ex-
ponents only. An ideal lens, for example, is character-
ized by the so called gnomonic projection, for which
g(ρ) = tan(ρ) (Calabretta & Greisen, 2002).

With equation (5), the coordinates of the image
point P are given by

x = r cosφ = fg(ρ) cosφ (6a)

y = r sinφ = fg(ρ) sinφ (6b)

where φ refers to the azimuth angle of point P , mea-
sured in the xy-plane. Both the azimuth angle φ and
the polar angle ρ may be expressed in terms of the unit
vector (A′, B′, C′), see Figure 2:

sin ρ =
√

(A′2 +B′2)

cosφ = A′/
√

(A′2 +B′2) = A′/ sin ρ

sin φ = B′/
√

(A′2 +B′2) = B′/ sin ρ

Substituting the last two equations into equations
(6a) and (6b) and taking into account equations (1)
and (2) leads to

x = fg(ρ)/ sin(ρ)(A+mλG) (7a)

y = fg(ρ)/ sin(ρ)B (7b)
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These two relations are valid for any lens with pro-
jection properties g(ρ). They define how the rays of a
point source in the sky at (A,B) are mapped to the
sensor at (x, y).

A special choice for g(ρ) is the orthographic pro-
jection. It is defined by g(ρ) = sin(ρ) (Calabretta &
Greisen, 2002). Inserting this into equations (7a and
7b), the sin(ρ) term in the denominator and the explicit
dependence of (x, y) on ρ are eliminated:

x = f(A+mλG) (8a)

y = fB, (8b)

dx/ dλ = fmG (9)

The orthographic projection maintains the linearity
of the vector components in equations (1) and (2), and a
polychromatic point source is expanded into a spectrum
with ideal properties:

• The spectrum extends along a straight line paral-
lel to the x-axis.

• The linear dispersion has a constant value over
the entire image plane. The dispersion may easily
be determined from two known spectral lines or
the zero order and one spectral line.

• Individual spectra of the points that make up a
meteor trail are shifted in x and in y and are par-
allel to each other. Since the dispersion has a
location-independent value, one global calibration
suffices to reduce all spectra.

Unfortunately, lenses do not map objects according
to an orthographic projection. Rather an ideal lens is
characterized by the gnomonic projection, defined by
g(ρ) = tan ρ. Ceplecha’s calculations are in fact based
on an ideal lens. This leads to curved spectra, the
so called “diffraction hyperbola” and to non-linear and
location-dependent dispersion relations. But even high-
quality lenses show some distortion and deviate from
a gnomonic projection, thereby modifying the hyper-
bola in a complicated way. And particularly wide-angle
lenses, which are popular in meteor cameras, are af-
fected by distortion.

We now show that these difficulties can be avoided
by applying an image transformation that radially dis-
torts the image in such a way that the resulting projec-
tion becomes orthographic. After this transformation,
equations (8) and (9) apply. The spectra are rectified
and the dispersion gets constant over the entire field.

The required transformation maps a point in the
original image, P = (r, φ), to a point in the radially
modified image, P ′ = (r′, φ). The azimuth angle φ
is left unchanged and, by the definition of the ortho-
graphic projection, the transformed radius must satisfy
the equation

r′ = f sin ρ (10)

Inverting the function g in equation (5) and solving
for the polar angle ρ leads to the prescription for the
transformation:

r′ = f sin[g−1(r/f)] (11a)

Figure 3 – Relation between the gnomonic projection (r)
and the orthographic projection (r′) of a point on the sphere
with radius f . The prime denotes the coordinates in the
orthographic projection coordinate system.

The inverse function

r = fg[arcsin(r′/f)] (11b)

is required for the practical calibration example and for
the implementation of the transformation in an image
processing software.

For the tangential (gnomonic) projection as a spe-
cial case (no lens distortion) the transformation to the
orthographic projection can be given in explicit form
(see also Figure 3):

r = f tan[arcsin(r′/f)] = r′/
√

[1− (r′/f)2] (12)

The function g(ρ), which is required for the trans-
formation, must be determined experimentally for each
lens/sensor combination. Several methods may be con-
sidered, e.g. an astrometric analysis of a star field or a
direct measurement on an optical bench.

As will be shown in a practical example, it is pos-
sible to define the transformation without resorting to
g(ρ) by directly analyzing a calibration spectrum. This
method relies on the fact that both sin(ρ) and g(ρ) are
odd functions. Equation (11b) can be represented by a
polynomial with odd exponents in r/f :

r = f(r′/f + a3(r′/f)3 + a5(r′/f)5 + . . .) =

r′(1 + a3(r′/f)2 + a5(r′/f)4 + . . .) (13)

For the tangential projection the polynomial coeffi-
cients of equation (12) are given by

r = r′(1 +
1
2

(r′/f)2 +
3
8

(r′/f)4 +
5
16

(r′/f)6 + . . .) (14)

4 Equipment

Before describing the experiments, an overview of the
used equipment may be useful, although the method is
applicable to any meteor camera with a grating, if some
important details are taken into account (in particular,
the grating has to be mounted perpendicularly to the
optical axis).
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The meteor station at Maienfeld is equipped with
two Watec 902H2 ultimate video cameras, one operat-
ing for the Swiss Meteor Network and supplying data
to the FMA (Fachgruppe Meteorastronomie) database.
This has a Computar HG2610AFCS-HSP lens (f =
2.6 mm, f/1.0) for recording and measuring time re-
solved meteor tracks. Together with the other stations
of the network this gives the information about meteor
path, velocity and distance. Without this information,
the spectra alone would be much less useful.

The second camera is equipped with a zoom lens
(Tamron 12VG412ASIR 1/2”, f : 4–12 mm, f/1.2) and
with a blazed 300 l/mm grating (Thorlabs GT50-03,
blaze angle 17.5◦, 50× 50 mm).a

The grating has been changed recently to a 600
l/mm grating, for which however not many useful re-
sults exist yet. The zoom lens is quite convenient. In
order to test and optimize the method and capture nu-
merous spectra a short focal length was used. For the
analysis of the meteor spectra resolution was not suffi-
cient, so the focal length was increased. With luck some
nice spectra were recorded, but still of limited scientific
value. The 600 l/mm grating doubles the resolution
within the same field of view, producing usable meteor
spectra.

5 Calibration

In general, neither the exact grating constant nor the
focal length and the distortion coefficients are precisely
known, so some way of calibration is necessary. In ad-
dition, the rotational symmetry of the distortion cor-
rection given by the equations (11–14) above is only
valid if the grating is mounted perpendicularly to the
optical axis, so some attention should be given to ver-
ify this. Also the position of the optical axis is gener-
ally not exactly in the centre of the detector but a few
pixels offset in the x- and y-coordinate at (x0, y0). No-
tice also that image coordinates are usually measured
in pixels, with the origin at a corner. This will be as-
sumed in the following unless otherwise noted. The
radius r =

√

(x− x0)2 + (y − y0)2 is also measured in
pixels. The position of the optical axis on the image
sensor can be determined before mounting the grating,
by imaging the night sky, if necessary with stacking sev-
eral images and finding an astrometric solution of the
coordinates of the stars in the image. If the software
UFO Captureb is used for the acquisition of the im-
ages and UFO Analyzer for the astrometric solution
of the images, both the aspect ratio of the pixels and the
coordinates of the optical axis are fitted in addition to
distortion parameters. If other image acquisition soft-
ware is used, it may be necessary to calculate them,
depending on the form of the astrometric solution. If
the software for the radial transformation according to
equation (13) assumes square pixels, the image has to
be stretched in the y-direction by the corresponding as-
pect ratio factor, otherwise the rotational symmetry is

ahttp://www.thorlabs.de/newgrouppage9.cfm?

objectgroup_id=1123
bhttp://sonotaco.com/soft/e_index.html

Figure 4 – Composite image of calibration lamp spectrum
(Hg-Ar, Ocean Optics, orders −3 to 3) recorded in different
parts of the image, superposed into a single image. Curva-
ture is visible for the top and bottom spectra.

lost and the transformation will not be correct for all
parts of the image.

5.1 Calibration spectra

Depending on the desired accuracy several calibration
spectra at different values of y should be recorded,
stretching over the full width and height of the detec-
tor. In principle it is sufficient to record a calibration
spectrum at y = y0 (straight spectrum). For the cal-
ibration a suitable light source with lines with known
wavelengths is used, which gives spectral lines over the
whole width of the detector. For a start a monochro-
matic laser with known wavelength (e.g. He-Ne gas laser
at 632.8 nm or a blue-ray laser at ≈ 405 nm) gives a
course calibration of dispersion, in particular for wide
angle lenses and/or gratings with low dispersion. Of
course, higher order spectral lines should be used for
the calibration as well, possibly taken with longer ex-
posure times to see them. Quite useful is also an Hg-Ar
calibration lampc with several lines from UV to near-IR.

5.2 Calibration example

Figure 4 shows a composite image of a calibration lamp
(Hg-Ar, Ocean Optics) recorded in the upper, centre
and lower part of the image, combined into a single im-
age. The image was corrected for the non-square pixel
shape by a scaling factor of 0.9183 in the y-direction
(obtained from an astrometric analysis of sky images
in UFO Analyzer). The zoom lens was adjusted to
approx. 7 mm focal length, the same as used for record-
ing meteors in a longer detection run. Only the centre
spectrum was used to determine the dispersion of the
grating/lens combination and the transformation pa-
rameters for changing the actual image into an ortho-
graphic projection. A calibration function was fitted to
the measured line positions with the method of least
squares. The fitting function was obtained by using
equation (8a), replacing x′ by r′ for y = y0 and inserting
r′ into equation (12). The parameter c2 was introduced

chttp://oceanoptics.com/product/hg-1/
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Table 1 – Measured positions of selected (non-overlapping)
Hg lines in the central spectrum of Figure 4, together with
calibration wavelengths (NIST)e in different orders and fit-
ted positions according to equation (15).

m·λNIST x fit x error Line
[nm] [pixel] [pixel] [pixel]

−1307.498 13.24 13.38 −0.14 Hg 3rd order
−1092.147 68.75 68.58 0.18 Hg 2nd order
−871.666 124.25 124.03 0.23 Hg 2nd order
−809.313 139.37 139.54 −0.17 Hg 2nd order
−546.074 204.43 204.41 0.02 Hg
−404.656 238.75 238.90 −0.16 Hg

0 336.80 336.80 −0.00 zero order
404.656 434.22 434.38 −0.16 Hg
546.074 468.83 468.62 0.21 Hg
809.313 532.87 532.77 0.09 Hg 2nd order
871.666 548.13 548.08 0.05 Hg 2nd order

1092.147 602.45 602.65 −0.20 Hg 2nd order
1307.498 656.77 656.72 0.00 Hg 3rd order

to account for lens distortion by interpolating between a
gnomonic projection (c2 = (p/f)2) and an orthographic
projection (c2 = 0). This corrects for 3rd order lens
distortion and gives a good approximation for the 5th
order term:d

x = x0 + (λ− λ0)/disp0/
√

[1− c2((λ− λ0)/disp0)2]
(15)

((λ−λ0)/disp0 corresponds to x′−x0 = r′ in the ortho-
graphic projection) with the following fit parameters:
disp0 = (dλ/ dx)0 = 4.145 nm/pixel (inverse disper-
sion), x0 = 362.2 pixel, λ0 = 104.8 nm (offset of λ at
x0), c2 = 4.104 · 10−7.

The measured line positions together with the fitted
positions used for the calibration are shown in Table 1.

From the inverse dispersion (dλ/ dx)0 and the known
grating constant the focal length is calculated from
equation (9) as f = 6.92 mm.
x0 is the position determined for the symmetry cen-

tre of the fit function. Ideally it is located in the image
centre, but small deviations may occur if the lens or the
grating are not perfectly aligned.

From the fit parameters above, it is possible to cal-
culate the distortion coefficients according to equation
(13):

r = r′[1 + 2.052 · 10−7r′2 + 6.318 · 10−14r′4], (16)

with r and r′ measured from the apparent centre
(x0, y0). The value of y0 can be determined from the
variation of the dispersion (dλ/ dx)0 as a function of y,
by calibrating spectra at different y-values and deter-
mining its maximum. This is shown in Figure 5, with
resulting values of (x0, y0) = (362.2, 281.3).

With the position of the symmetry centre and the
coefficients of equation (13), the distortion parameters

dThe distortion correction with c2 is similar to the fit of lens
distortion by the law (Kwon et al., 2014) r = k1 · sin(β/k2) with
adjustable parameters k1, k2, which interpolates between ortho-
graphic (k2 = 1) and equidistant (k2 →∞) projection.

eNIST, Atomic spectra database, http://physics.nist.gov/

PhysRefData/ASD/lines_form.html

Figure 5 – Inverse dispersion from fit of measured spectra
in different parts of the image.

Figure 6 – Image of Figure 4, after applying the image trans-
formation to correct the curvature of the spectrum and non-
linear dispersion.

of this lens are known and the transformation can be
applied to the image of the spectrum, with the result
shown in Figure 6. The slight curvature of the top and
bottom spectrum is eliminated and the linearity of the
calibration can be checked. With a single inverse dis-
persion of 4.145 nm/pixel, spectra for different y-values
can be calibrated with an rms error of 0.94 nm or 0.23
pixel (Figure 7). The error is mostly caused by sat-
urated spectral lines and only slightly larger than the
rms error for a 5th order polynomial fit to the dispersion

Figure 7 – Wavelength error of measured lines, compared to
their computed position, assuming a constant dispersion of
4.145 nm/pixel for all the spectra.
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Figure 8 – Spectra before and after correction of grating nonlinearity and lens distortion. Left: Uncorrected data. Right:
After application of the image transformation. Top: Spectra of He-Ne laser. Bottom: Errors from a calibration assuming
a linear dispersion law. The blaze of the grating reduces the intensity of the 2nd and third order spectrum to < 0.5%,
making them barely visible, but sufficiently bright for analysis, while the first order is overexposed.

function of a single spectrum before applying the trans-
formation. In addition the data show that in the corners
the errors are largest. This is to be expected since the
fit was done on the x-axis out to a radius of 360 pixel,
with the half diagonal of 446 pixel being considerably
larger. The fit could be improved by simultaneously
fitting several spectra at different y values or by a sepa-
rate determination of lens distortion. This was not done
here.

5.3 2nd example, short focal lens, not

useful for meteor spectroscopy

The following example, although not of practical value
for meteor spectroscopy (too low spectral resolution),
shows the effect of grating nonlinearity and lens distor-
tion. The images were recorded with the same equip-
ment as the example above, the difference being a
shorter focal length (approx. 4 mm) and a He-Ne laser
for calibration. At this wide angle enough orders of
the He-Ne laser line at 632.8 nm are recorded for a
symmetric 5th order polynomial fit of x vs. λ around
x0. The images before and after correction of distor-
tion are shown in Figure 8. The coefficients for the cor-
rection of the distortion were: (x0, y0) = (367.0, 286.5),
disp0 = 7.354 nm/pixel → f = 3.97 mm, r = r′[1 +
3.94 · 10−7r′2 + 2.01 · 10−12r′4]. The rms error of the

linear calibration after the transformation was 1.7 nm
or 0.24 pixel.

6 Analysis of meteor spectra

Once calibrated and without changing grating orienta-
tion or focal length of the lens, spectra of meteors can
be analysed with the following procedure.

• For video spectra the file is converted to single im-
ages. If desired, the video frames of an interlaced
video may be deinterlaced into fields with higher
time resolution. This results in higher spectral
resolution, if the meteor velocity has a component
in the direction of the dispersion (along x-axis).

• Dark frames are subtracted. A master dark can
be obtained by averaging images before or after
the appearance of the meteor. This subtraction
also eliminates background stars, which otherwise
could contaminate the meteor spectra.

• These images are stretched in the y-direction if
necessary to produce square pixels. Then the
transformation to the orthographic projection is
applied to all images with meteor spectra. In a
streamlined workflow, the image extraction from
the video file with or without deinterlacing, the
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Figure 9 – Meteor 2014 October 29, 19h10m26s UT at
Maienfeld, peak image of video, duration of recorded path
0.68 sec, grating 300 l/mm.

stretching and transformation to the orthographic
projection can be combined into a single proce-
dure.

• The meteor spectra, because they are parallel and
all have the same dispersion, can be stacked with
the zero order as a suitable reference in order to
increase signal to noise ratio. In case the zero
order is not visible, another prominent line of the
spectrum can be used as reference for stacking.
Many video cameras only have 8-bit resolution,
so averaging several frames is quite important.

• The resulting spectral image is converted to a 1-
dimensional raw spectrum and calibrated with the
known dispersion from the lamp calibration, us-
ing the zero order as a reference. As a check some
well-known lines (e.g. Na-D or O i) should show
up with the correct wavelength. Minor adjust-
ments of calibration to compensate for a shift of
focal length may be applied at this point. In the
absence of the zero order (outside of image) the
constant linear dispersion of the spectrum helps
to identify some known meteor spectral lines and
find the wavelength reference position. A correct
line assignment of an unknown spectrum with not
well known dispersion would be quite difficult.

• If available, the spectrum may be corrected for
spectral response obtained from a spectrum of a
light source with known spectral energy distribu-
tion (calibrated star or tungsten lamp with known
blackbody temperature).

6.1 Meteor spectrum of 2014 October

29

The meteor of 2014 October 29, 19h10m26s UT was se-
lected as an example. It appeared right in the corner of
the field of view, so the required distortion correction
was the maximum possible (Figure 9). Peak magnitude
of the meteor was−4.9 mag, with the zero order and the

Figure 10 – Calibrated spectrum, blue curve: 1st part,
video fields 54–68 of orthographic projection registered and
stacked (average magnitude −4.7 mag). Red curve: 2nd
part, video fields 69–83 (average magnitude −3.7 mag).
Strong lines including zero order are broadened by satura-
tion, especially in the first spectrum.

strongest lines overexposed due to the limited dynamic
range of the video camera, which reduces the usability
for a quantitative analysis of the intensities. The spec-
tra of the individual video frames were processed as de-
scribed above. After de-interlacing 30 spectra were dark
corrected, transformed to the orthographic projection,
and registered to align to the zero order. Two series of
15 spectra each were stacked. From these images the 1-
dimensional spectra were extracted and calibrated with
the zero order and the known inverse dispersion of 4.145
nm/pixel, verified by the O i lines at 777.4 nm in first
and second order.

7 Conclusion

Meteor spectra do appear anywhere in the field of view,
so the assignment of spectral lines may be difficult if
the exact dispersion of the spectrum is not known and
varies in different areas of the image. Using the de-
scribed transformation of the spectra to an orthographic
projection solves this problem. With the known wave-
length of a single spectral line (e.g. the Na-D line), the
whole spectrum can be calibrated for any position of the
meteor in the image area. This is particularly useful if
the zero order is outside the field of view. The determi-
nation of the transformation coefficients requires some
effort, but it has to be done only once for each lens (at
fixed focal length and fixed grating orientation). The
transformation to a constant, linear scale without cur-
vature allows using standard spectroscopy software for
further analysis. The method has been shown to work
with a short focal length camera, but it is applicable to
larger format, longer focal length cameras with higher
spectral resolution. To the knowledge of the authors,
the use of the orthographic projection for linearization
of spectral dispersion has not been applied to optical
spectroscopy so far. In radio interferometry however,
the orthographic projection is widely used in aperture
synthesis (Calabretta, 2002). The transformation equa-
tions (11) to (14) are independent of the grating, they
only depend on the lens and its distortions. There-
fore the distortion coefficients can be derived without
grating from an astrometric analysis of an image con-
taining a sufficiently large number of stars. This is the
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preferred method, as the whole field of view out to the
corners contributes to the determination of the parame-
ters. The dispersion can then be obtained from any two
lines in the transformed image of a spectrum. The first
results show that the method works as expected. Some
improvements are still possible, such as the use of a
grating with higher dispersion (first results look promis-
ing with increased resolution), or a camera with higher
angular resolution and larger dynamic range. The soft-
ware can also be streamlined to simplify the processing
of the video files into calibrated spectra.
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Note added in proof

A spectrum calibration method similar to (Ceplecha,
1961) can be found in (Zender et al., 2014) which in-
cludes distortion caused by an image intensifier.
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